Blog

widget

Hormigon


Hormigón


La técnica del hormigón está muy desarrollada permitiendo soluciones muy complejas. En este puente sobre el río Almonte (España) se ve como progresa la ejecución del primer arco desde las márgenes apoyado en tirantes provisionales faltando de hormigonar solo la clave del mismo. Detrás, en paralelo, se observa el avance de un segundo arco en una fase más preliminar.

Colocación de hormigón fresco en obra. El material que se vierte es una masa pastosa. Los trabajadores con botas impermeables se mueven por él sin dificultad.

El hormigón permite rellenar un molde o encofrado con una forma previamente establecida. En este caso, es un encepado, un elemento que une las cabezas de un grupo de pilotes, hincados o embebidos profundamente en el terreno.
El hormigón o concreto es el material resultante de la mezcla de cemento (u otro conglomerante)
con áridos (grava, gravilla y arena) y agua. La mezcla de cemento con arena y agua se denomina
 mortero. Existen hormigones que se producen con otros conglomerantes que no son cemento,
como el hormigón asfáltico que utiliza betún para realizar la mezcla.
El cemento, mezclado con agua, se convierte en una pasta moldeable con propiedades adherentes,
que en pocas horas fragua y se endurece tornándose en un material de consistencia pétrea.
La principal característica estructural del hormigón es que resiste muy bien los esfuerzos de 
compresión, pero no tiene buen comportamiento frente a otros tipos de esfuerzos (tracción,
flexión, cortante, etc.), por este motivo es habitual usarlo asociado al acero, recibiendo el nombre
de hormigón armado, comportándose el conjunto muy favorablemente ante las diversas solicitaciones.
Además, para poder modificar algunas de sus características o comportamiento, se pueden
añadir aditivos y adiciones, existiendo una gran variedad de ellos: colorantes, aceleradores,
retardadores de fraguado, fluidificantes, impermeabilizantes, fibras, etc.
Cuando se proyecta una estructura de hormigón armado se establecen las dimensiones de los
elementos, el tipo de hormigón, los aditivos, y el acero que hay que colocar en función de los
 esfuerzos que deberá soportar y de las condiciones ambientales a que estará expuesto.
Su empleo es habitual en obras de arquitectura e ingeniería, tales como edificios, puentes,
diques, puertos, canales, túneles, etc. Incluso en aquellas edificaciones cuya estructura principal
 se realiza en acero, su utilización es imprescindible para conformar la cimentación.

Contenido

  [ocultar

[editar]Etimología

Hormigón procede del término formicō, palabra latina que alude a la cualidad de «moldeable»
 o «dar forma». El término concreto, definido en el diccionario de la RAE como americanismo,
también es originario del latín: procede de la palabra concretus, que significa «crecer unidos»,
o «unir». Su uso en idioma español se transmite por vía de la cultura anglosajona, comoanglicismo
(o calco semántico), siendo la voz inglesa original concrete.

[editar]Historia del hormigón


Trabajadores del Antiguo Egipto.
Pintura en la tumba de Rejmira.
Precedentes
La historia del hormigón constituye un capítulo fundamental de la historia de la construcción. Cuando
el hombre optó por levantar edificaciones utilizando materiales arcillosos o pétreos, surgió la necesidad
de obtener pastas o morteros que permitieran unir dichos mampuestos para poder conformar estructuras
 estables. Inicialmente se emplearon pastas elaboradas con arcillayeso o cal, pero se deterioraban
rápidamente ante las inclemencias atmosféricas. Se idearon diversas soluciones, mezclando agua
con rocas y minerales triturados, para conseguir pastas que no se degradasen fácilmente. Así, en
el Antiguo Egipto se utilizaron diversas pastas obtenidas con mezclas de yesos y calizas disueltas en agua,
para poder unir sólidamente los sillares de piedra; como las que aún perduran entre los bloques
calizos del revestimiento de la Gran Pirámide de Guiza.

[editar]Hormigones de cementos naturales

PANTEÓN (SIGLO II)
Pantheon.drawing.jpg
DesgodetzPantheon.jpg
La cúpula semiesférica de 43,44 m (150 pies) de diámetro ha resistido diecinuevesiglos sin reformas o refuerzos. El grueso anillo murario es de opera latericia (hormigón con ladrillo) y la cúpula se aligeró utilizandopiedra pómez como árido.
En la Antigua Grecia, hacia el 500 a. C., se mezclaban compuestos de caliza calcinada con agua y
 arena, añadiendo piedras trituradas, tejas rotas o ladrillos, dando origen al primer hormigón de la
 historia, usando tobas volcánicas extraídas de la isla de Santorini. Los antiguos romanos emplearon
 tierras o cenizas volcánicas, conocidas también como puzolana, que contienen sílice y alúmina,
que al combinarse químicamente con la cal daban como resultado el denominado cemento puzolánico
(obtenido en Pozzuoli, cerca del Vesubio). Añadiendo en su masa jarras cerámicas o materiales de baja
densidad (piedra pómez) obtuvieron el primer hormigón aligerado.1 Con este material se construyeron desde
tuberías a instalaciones portuarias, cuyos restos aún perduran. Destacan construcciones como los diversos
arcos del Coliseo romano, los nervios de la bóveda de la Basílica de Majencio, con luces de más de 25 metros,2
las bóvedas de las Termas de Caracalla, y la cúpula del Panteón de Agripa, de unos 43 metros de diámetro,
 la de mayor luz durante siglos.3
Hormigón medieval
Tras la caída del Imperio romano el hormigón fue poco utilizado, posiblemente debido a la falta de
medios técnicos y humanos, la mala calidad de la cocción de la cal, y la carencia o lejanía de tobas
 volcánicas; no se encuentran muestras de su uso en grandes obras hasta el siglo XIII, en que se vuelve
 a utilizar en los cimientos de la Catedral de Salisbury, o en la célebre Torre de Londres, en Inglaterra.
Durante el renacimiento su empleo fue escaso y muy poco significativo.
Civilizaciones precolombinas
En algunas ciudades y grandes estructuras, construidas por Mayas y Aztecas en México o las de
Machu Pichu en el Perú, se utilizaron materiales cementantes.1
El siglo XVIII
En el siglo XVIII se reaviva el afán por la investigación. John Smeaton, un ingeniero de Leeds fue comisionado
 para construir por tercera vez un faro en el acantilado de Edystone, en la costa Cornwall, empleando piedras
unidas con un mortero de cal calcinada para conformar una construcción monolítica que soportara la constante 
acción de las olas y los húmedos vientos; fue concluido en 1759 y la cimentación aún perdura.

[editar]El siglo XIX: cemento Portland y hormigón armado

El cemento Portland
Joseph Aspdin y James Parker patentaron en 1824 el Portland Cement, obtenido de caliza arcillos
y carbón calcinados a alta temperatura –denominado así por su color gris verdoso oscuro, muy 
similar a la piedra de la isla de Pórtland. Isaac Johnson obtiene en 1845 el prototipo del cemento
moderno elaborado de una mezcla de caliza y arcilla calcinada a alta temperatura, hasta la
formación del clinker; el proceso de industrialización y la introducción de hornos rotatorios
propiciaron su uso para gran variedad de aplicaciones, hacia finales del siglo XIX.4
El hormigón armado
El hormigón, por sus características pétreas, soporta bien esfuerzos de compresión, pero
se fisura con otros tipos de solicitaciones (flexión, tracción, torsión, cortante); la inclusión 
de varillas metálicas que soportaran dichos esfuerzos propició optimizar sus características 
y su empleo generalizado en múltiples obras de ingeniería y arquitectura.
La invención del hormigón armado se suele atribuir al constructor William Wilkinson,
quien solicitó en 1854 la patente de un sistema que incluía armaduras de hierro para «la mejora
de la construcción de viviendas, almacenes y otros edificios resistentes al fuego». El francés
Joseph Monier patentó varios métodos en la década de 1860, pero fue François Hennebique
quien ideó un sistema convincente de hormigón armado, patentado en 1892, que utilizó en la
construcción de una fábrica de hilados en Tourcoing, Lille, en 1895.5
Diseño de estructuras de hormigón armado
Hennebique y sus contemporáneos basaban el diseño de sus patentes en resultados
experimentales, mediante pruebas de carga; los primeros aportes teóricos los realizan
prestigiosos investigadores alemanes, tales como Wilhelm Ritter, quien desarrolla en 1899 la
 teoría del «Reticulado de Ritter-Mörsch». Los estudios teóricos
fundamentales se gestarán en el siglo XX.

[editar]El siglo XX: auge de la industria del hormigón


Puente de hormigón sobre el río Ulla, enVedraGaliciaEspaña.

Guggenheim museum, diseñado en hormigón por Frank Lloyd Wright, en Nueva YorkEE. UU.

Ópera de Sídney, edificio diseñado por el arquitecto danés Jørn Utzon en 1957 e inaugurado en el año 1973, en Sídney,Australia.
A principios del siglo XX surge el rápido crecimiento de la industria del cemento, debido a varios
factores: los experimentos de los químicos franceses Vicat y Le Chatelier y el alemán Michaélis,
que logran producir cemento de calidad homogénea; la invención del horno rotatorio para calcinación
y el molino tubular; y los métodos de transportar hormigón fresco ideados por Juergen Hinrich
Magens que patenta entre 1903 y 1907. Con estos adelantos pudo elaborarse cemento portlanden
 grandes cantidades y utilizarse ventajosamente en la industria de la construcción.1
Maillart proyecta en 1901 un puente en arco de 38 metros de luz sobre el río Inn, en Suiza, construido
 con vigas cajón de hormigón armado; entre 1904 y 1906 diseña el puente de Tavanasa, sobre el río
Rin, con 51 metros de luz, el mayor de Suiza. Claude A.P. Turner realiza en 1906 el edificioBovex de
 Minneapolis (EE.UU.), con los primeros pilares fungiformes (de amplios capiteles).
Le Corbusier, en los años 1920, reclama en Vers une Architecture una producción lógica, funcional y constructiva,
despojada de retóricas del pasado; en su diseño de Casa Domino, de 1914, la estructura está conformada con pilares y forjados de hormigón armado, posibilitando fachadas totalmente diáfanas y la libre distribución de los espacios interiores.6
Los hangares de Orly (París), diseñados por Freyssinet entre 1921 y 1923, con 60 metros de luz, 9 de flecha y 300 de longitud, se construyen con láminas parabólicas de hormigón armado, eliminando la división funcional entre paredes y techo. En 1929 Frank Lloyd Wright construye el primerrascacielos en hormigón.
Hormigones de altas prestaciones
En la década de 1960 aparece el hormigón reforzado con fibras, incorporadas en el momento del amasado, dando al hormigón isotropía y aumentando sus cualidades a flexión, tracción, impacto, fisuración, etc. En los años 1970, los aditivos permiten obtener hormigones de alta resistencia, de 120 a más de 200 MPa; la incorporación de monómeros, genera hormigones casi inatacables por los agentes químicos o indestructibles por los ciclos hielo-deshielo, aportando múltiples mejoras en diversas propiedades del hormigón.
Más alto, más largo, más ancho y más bello.
Los grandes progresos en el estudio científico del comportamiento del hormigón armado y los avances tecnológicos, posibilitaron la construcción de rascacielos más altos, puentes de mayor luz, amplias cubiertas e inmensas presas. Su empleo será insustituible en edificios públicos que deban albergar multitudes: estadios, teatros, cines, etc. Muchas naciones y ciudades competirán por erigir la edificación de mayor dimensión, o más bella, como símbolo de su progreso que, normalmente, estará construida en hormigón armado.
Los edificios más altos del mundo poseen estructuras de hormigón y acero, tales como las Torres Petronas, en Kuala LumpurMalasia (452 metros, 1998), el edificio Taipei 101 en Taiwán (509 metros, 2004), o el Burj Dubai de la ciudad de Dubái (818 metros, 2009), en el siglo XXI.

[editar]El siglo XXI: la cultura medioambiental

El uso de materiales reciclados como ingredientes del hormigón está ganando popularidad debido a la cada vez
más severa legislación medioambiental. Los más utilizados son las cenizas volantes, un subproducto de las centrales termoeléctricas alimentadas por carbón. Su impacto es significativo pues posibilitan la reducción de canteras y vertederos,
 ya que actúan como sustitutos del cemento, y reducen la cantidad necesaria para obtener un buen hormigón. Como la producción
de cemento genera grandes volúmenes de dióxido de carbono, la tecnología de sustitución del cemento desempeña un importante
papel en los esfuerzos por aminorar las emisiones de dióxido de carbono.
También se utiliza para confinar desechos radiactivos. Entre ellos, el más importante es el del reactor que colapsó en la central 
nuclear de Chernobil, el cual fue cubierto de hormigón para evitar fugas radiactivas.

[editar]Características y comportamiento del hormigón

Nociones generales
El hormigón es el material resultante de unir áridos con la pasta que se obtiene al añadir agua a
un conglomerante.7 El conglomerante puede ser cualquiera, pero cuando nos referimos a hormigón, generalmente
es un cemento artificial, y entre estos últimos, el más importante y habitual es el cemento portland.7

La función de la Planta de hormigón es aportar el cemento, el agua y los varios tamaños de áridos en las proporciones adecuadas. El camión hormigonera transporta el hormigón fresco en su cuba rotativa donde mediante un amasado continuo se mezclan íntimamente todos los componentes.

Armadura de acero para una pila inclinada y su cimiento. Los puntales provisionales de madera mantienen la armadura en su posición.

Hormigón postesado: cuatro cordones, formados cada uno por veinte alambres de acero de alta resistencia, preparados en el tablero de un puente para tensar. Se ponen en tensión mediante gatos hidráulicos.
Los áridos proceden de la desintegración o trituración, natural o artificial de rocas y, según la naturaleza de las mismas, reciben el nombre de áridos silíceos, calizos, graníticos, etc. El árido cuyo tamaño es superior a 5 mm se llama árido grueso o grava, mientras que el inferior a 5 mm se llama árido fino o arena.8
La pasta formada por cemento y agua es la que confiere al hormigón su fraguado y endurecimiento, mientras que
el árido es un material inerte sin participación en el fraguado y endurecimiento.8
El cemento se hidrata en contacto con el agua, iniciándose complejas reacciones químicas que lo convierten en un producto maleable con buenas propiedades adherentes, que en el transcurso de unas horas, derivan en el fraguado y endurecimiento progresivo de la mezcla, obteniéndose un material de consistencia pétrea.
Una característica importante del hormigón es poder adoptar formas distintas, a voluntad del proyectista. Al colocarse en obra es una masa plástica que permite rellenar un molde, previamente construido con una forma establecida, que recibe el nombre de encofrado.7
Características estructurales
La principal característica estructural del hormigón es resistir muy bien los esfuerzos de compresión. Sin embargo, tanto su resistencia a traccióncomo al esfuerzo cortante son relativamente bajas, por lo cual se debe utilizar en situaciones donde las solicitaciones por tracción o cortante sean muy bajas.
Para superar este inconveniente, se "arma" el hormigón introduciendo barras de acero, conocido como hormigón armado, o concreto reforzado, permitiendo soportar los esfuerzos cortantes y de tracción con las barras de acero. Es usual, además, disponer barras de acero reforzando zonas o elementos fundamentalmente comprimidos, como es el caso de los pilares. Los intentos de compensar las deficiencias del hormigón a tracción y cortante originaron el desarrollo de una nueva técnica constructiva a principios del siglo XX, la del hormigón armado.
Posteriormente se investigó la conveniencia de introducir tensiones en el acero de manera deliberada y previa al fraguado del hormigón de la pieza estructural, desarrollándose las técnicas del hormigón pretensado y el hormigón postensado.
Así, introduciendo antes del fraguado alambres de alta resistencia tensados en el hormigón, este queda comprimido al fraguar, con lo cual las tracciones que surgirían para resistir las acciones externas, se convierten en descompresiones de las partes previamente comprimidas, resultando muy ventajoso en muchos casos. Para el pretensado se utilizan aceros de muy alto límite elástico, dado que el fenómeno denominado fluencia lenta anularía las ventajas del pretensado.
Los aditivos permiten obtener hormigones de alta resistencia; la inclusión de monómeros y adiciones para hormigón aportan múltiples mejoras en las propiedades del hormigón.
Cuando se proyecta un elemento de hormigón armado se establecen las dimensiones, el tipo de hormigón, la cantidad, calidad, aditivos, adiciones y disposición del acero que hay que aportar en función los esfuerzos que deberá resistir cada elemento.
Un diseño racional, la adecuada dosificación, mezcla, colocación, consolidación, acabado y curado, hacen del hormigón un material idóneo para ser utilizado en construcción, por ser resistente, durable, incombustible, casi impermeable, y requerir escaso mantenimiento. Como puede ser moldeadofácilmente en amplia variedad de formas y adquirir variadas texturas y colores, se utiliza en multitud de aplicaciones.
Características físicas del hormigón
Las principales características físicas del hormigón, en valores aproximados, son:
  • Densidad: en torno a 2.350 kg/m3
  • Resistencia a compresión: de 150 a 500 kg/cm2 (15 a 50 MPa) para el hormigón ordinario. Existen hormigones especiales de alta resistencia que alcanzan hasta 2.000 kg/cm2 (200 MPa).
  • Resistencia a tracción: proporcionalmente baja, es del orden de un décimo de la resistencia a compresión y, generalmente, poco significativa en el cálculo global.
  • Tiempo de fraguado: dos horas, aproximadamente, variando en función de la temperatura y la humedad 
  • del ambiente exterior.
  • Tiempo de endurecimiento: progresivo, dependiendo de la temperatura, humedad y otros parámetros.
    • De 24 a 48 horas, adquiere la mitad de la resistencia máxima; en una semana 3/4 partes, y en 4 semanas 
    • prácticamente 
    • la resistencia total de cálculo.
  • Dado que el hormigón se dilata y contrae en magnitudes semejantes al acero, pues tienen parecido coeficiente de dilatación 
  • térmico, resulta muy útil su uso simultáneo en obras de construcción; además, el hormigón protege al acero de la
  •  oxidación al recubrirlo.

[editar]Fraguado y endurecimiento


Diagrama indicativo de la resistencia (en %) que adquiere el hormigón a los 14, 28, 42 y 56 días.
La pasta del hormigón se forma mezclando cemento artificial y agua debiendo embeber totalmente a los áridos. La principal cualidad de esta pasta es que fragua y endurece progresivamente, tanto al aire como bajo el agua.9
El proceso de fraguado y endurecimiento es el resultado de reacciones químicas de hidratación entre los componentes del cemento. La fase inicial de hidratación se llama fraguado y se caracteriza por el paso de la pasta del estado fluido al estado sólido. Esto se observa de forma sencilla por simple presión con un dedo sobre la superficie del hormigón. Posteriormente continúan las reacciones de hidratación alcanzando a todos los constituyentes del cemento que provocan el endurecimiento de la masa y que se caracteriza por un progresivo desarrollo de resistencias mecánicas.9
El fraguado y endurecimiento no son más que dos estados separados convencionalmente; en realidad solo hay un único proceso de hidratación continuo.9
En el cemento portland, el más frecuente empleado en los hormigones, el primer componente en reaccionar es el aluminato tricálcico con una duración rápida y corta (hasta 7-28 días). Después el silicato tricálcico, con una aportación inicial importante y continua durante bastante tiempo. A continuación el silicato bicálcico con una aportación inicial débil y muy importante a
partir de los 28 días.9
El fenómeno físico de endurecimiento no tiene fases definidas. El cemento está en polvo y sus partículas o granos se hidratan
progresivamente, inicialmente por contacto del agua con la superficie de los granos, formándose algunos compuestos cristalinos
y una gran parte de compuestos microcristalinos asimilables a coloides que forman una película en la superficie del grano.
A partir de entonces el endurecimiento continua dominado por estas estructuras coloidales que envuelven los granos del cemento
 y a través de las cuales progresa la hidratación hasta el núcleo del grano.9
El hecho de que pueda regularse la velocidad con que el cemento amasado pierde su fluidez y se endurece, lo hace un producto muy útil
en construcción.
Una reacción rápida de hidratación y endurecimiento dificultaría su transporte y una cómoda puesta en obra rellenando todos los huecos en los
encofrados. Una reacción lenta aplazaría de forma importante el desarrollo de resistencias mecánicas. En las fábricas de cemento se consigue
controlando la cantidad de yeso que se añade al clinker de cemento. En la planta de hormigón, donde se mezcla la pasta de cemento y agua con
los áridos, también se pueden añadir productos que regulan el tiempo de fraguado.9
En condiciones normales un hormigón portland normal comienza a fraguar entre 30 y 45 minutos después de que ha quedado en reposo en los moldes
y termina el fraguado trascurridas sobre 10 ó 12 horas. Después comienza el endurecimiento que lleva un ritmo rápido en los primeros días hasta llegar
al primer mes, para después aumentar más lentamente hasta llegar al año donde prácticamente se estabiliza.10 En el cuadro siguiente se observa la
evolución de la resistencia a compresión de un hormigón tomando como unidad la resistencia a 28 días, siendo cifras orientativas:11


Evolución de la Resistencia a compresión de un Hormigón Portland normal
Edad del hormigón en días372890360
Resistencia a compresión0,400,651,001,201,35

[editar]Resistencia


Para comprobar que el hormigón colocado en obra tiene la resistencia requerida se rellenan con el mismo hormigón unos moldes cilíndricos normalizados y se calcula su resistencia en un laboratorio realizando ensayos de rotura a compresión.
En el proyecto previo de los elementos, la Resistencia característica (fck) del hormigón es aquella que se adopta
en todos los cálculos como resistencia a compresión del mismo, y dando por hecho que el hormigón que se ejecutará 
resistirá ese valor se dimensionan las medidas de todos los elementos estructurales.12
La Resistencia característica de proyecto (fck) establece por tanto el límite inferior, debiendo cumplirse que cada
amasada de hormigón colocada tenga esa resistencia como mínimo. En la práctica, en la obra se realizan ensayos
estadísticos de resistencias de los hormigones que se colocan y el 95% de los mismos debe ser superior a fck,
considerándose que con el nivel actual de la tecnología del hormigón, una fracción defectuosa del 5% es perfectamente aceptable.
La resistencia del hormigón a compresión se obtiene en ensayos de rotura a compresión de probetas cilíndricas
normalizadas realizados a los 28 días de edad y fabricadas con las mismas amasadas puestas en obra.12 La Instrucción española (EHE) recomienda utilizar la siguiente serie de resistencias características a compresión a 28 días (medidas en Newton/mm²): 20; 25; 30, 35; 40; 45 y 50.12 Por ello, las Plantas de fabricación de hormigón suministran habitualmente hormigones que garantizan estas resistencias.

Ensayo de consistencia en hormigón fresco mediante el Cono de Abrams que mide el asiento que se produce en una forma troncocónica normalizada cuando se desmoldea.

[editar]Consistencia del hormigón fresco

La consistencia es la mayor o menor facilidad que tiene el hormigón fresco para deformarse y consiguientemente para ocupar todos los huecos del molde o encofrado. Influyen en ella distintos factores, especialmente la cantidad de agua de amasado, pero también el tamaño máximo del árido, la forma de los áridos y su granulometría.13
La consistencia se fija antes de la puesta en obra, analizando cual es la más adecuada para la colocación según los medios que se dispone de compactación. Se trata de un parámetro fundamental en el hormigón fresco.
Entre los ensayos que existen para determinar la consistencia, el más empleado es el cono de Abrams. Consiste en llenar con hormigón fresco un molde troncocónico de 30 cm de altura. La pérdida de altura que se produce cuando se retira el molde, es la medida que define la consistencia.13
Los hormigones se clasifican por su consistencia en secos, plásticos, blandos y fluidos tal como se indica en la tabla siguiente:14


Consistencia de los hormigones frescos
ConsistenciaAsiento en cono de Abrams (cm)Compactación
Seca0-2Vibrado
Plástica3-5Vibrado
Blanda6-9Picado con barra
Fluida10-15Picado con barra
Líquida16-20Picado con barra

[editar]Durabilidad

Hoover dam from air.jpg
Las presas de hormigón son una tipología habitual en la construcción de embalses. En las imágenes la presa de Hoover construida en EE.UU. en 1936
 y la de Atazar en España de 1972. Ambas diseñadas con forma parabólica para optimizar la capacidad de soportar esfuerzos a compresión del hormigón.
Se define en la Instrucción española EHE, la durabilidad del hormigón como la capacidad para comportarse satisfactoriamente frente a las acciones físicas y químicas agresivas a lo largo de la vida útil de la estructur protegiendo también las armaduras y elementos metálicos embebidos en su interior.15
Por tanto no solo hay que considerar los efectos provocados por las cargas y solicitaciones, sino también las condiciones físicas y químicas a las que se
expone. Por ello se considera el tipo de ambiente en que se va a encontrar la estructura y que puede afectar a la corrosión de las armaduras, ambientes
químicos agresivos, zonas afectadas por ciclos de hielo-deshielo, etc.15
Para garantizar la durabilidad del hormigón y la protección de las armaduras frente a la corrosión es importante realizar un hormigón con una permeabilidad reducida, realizando una mezcla con una relación agua/cemento baja, una compactación idónea, un peso en cemento adecuado y la hidratación suficiente de éste añadiendo agua de curado para completarlo. De esta forma se consigue que haya los menos poros posibles y una red capilar interna poco comunicada y
así se reducen los ataques al hormigón.15
En los casos de existencia de sulfatos en el terreno o de agua de mar se deben emplear cementos especiales. Para prevenir la corrosión de armaduras hay
que cuidar el recubrimiento mínimo de las mismas.15

[editar]Tipos de hormigón

En la Instrucción española (EHE), publicada en 1998, los hormigones están tipificados según el siguiente formato siendo obligatorio referirse de esta forma
 en los planos y demás documentos de proyecto, así como en la fabricación y puesta en obra:16
Hormigón T – R / C / TM / A
T: se denominará HM cuando sea hormigón en masa, HA cuando sea hormigón armado y HP cuando sea hormigón pretensado.
R: resistencia característica del hormigón expresada en N/mm².
C: letra inicial del tipo de consistencia: S Seca, P plástica, B Blanda, F Fluida y L Líquida.
TM: tamaño máximo del árido expresado en milímetros.
A: designación del ambiente a que estará expuesto el hormigón.


Tipos de Hormigón
Hormigón ordinarioTambién se suele referir a él denominándolo simplemente hormigón. Es el material obtenido al mezclar cemento portland, agua y áridos de varios tamaños, superiores e inferiores a 5 mm, es decir, con grava y arena.17
Hormigón en masaEs el hormigón que no contiene en su interior armaduras de acero. Este hormigón solo es apto para resistir esfuerzos de compresión.17
Hormigón armadoEs el hormigón que en su interior tiene armaduras de acero, debidamente calculadas y situadas. Este hormigón es apto para resistir esfuerzos de compresión y tracción. Los esfuerzos de tracción los resisten las armaduras de acero. Es el hormigón más habitual.17
Hormigón pretensadoEs el hormigón que tiene en su interior una armadura de acero especial sometida a tracción.17 Puede ser pre-tensado si la armadura se ha tensado antes de colocar el hormigón fresco o post-tensado si la armadura se tensa cuando el hormigón ha adquirido su resistencia.
MorteroEs una mezcla de cemento, agua y arena (árido fino), es decir, un hormigón normal sin árido grueso.7
Hormigón ciclópeoEs el hormigón que tiene embebidos en su interior grandes piedras de dimensión no inferior a 30 cm.17
Hormigón sin finosEs aquel que sólo tiene árido grueso, es decir, no tiene arena (árido menor de 5 mm).17
Hormigón aireado o celularSe obtiene incorporando a la mezcla aire u otros gases derivados de reacciones químicas, resultando un hormigón baja densidad.17
Hormigón de alta densidadFabricados con áridos de densidades superiores a los habituales (normalmente barita, magnetita, hematita...) El hormigón pesado se utiliza para blindar estructuras y proteger frente a la radiación.

[editar]Características de los componentes del hormigón

[editar]Cemento

Los cementos son productos que amasados con agua fraguan y endurecen formándose nuevos
compuestos resultantes de reacciones
de hidratación que son estables tanto al aire como sumergidos en agua.18
Hay varios tipos de cementos. Las propiedades de cada uno de ellos están íntimamente asociadas
a la composición química de sus componentes iniciales, que se expresa en forma de sus óxidos, y
 que según cuales sean formaran compuestos resultantes distintos en las reacciones de hidratación.18
Cada tipo de cemento está indicado para unos usos determinados; también las condiciones ambientales
 determinan el tipo y clase del cemento afectando a la durabilidad de los hormigones. Los tipos
 y denominaciones de los cementos y sus componentes están normalizados y sujetos a estrictas
condiciones. La norma española establece los siguientes tipos: cementos comunes, los resistentes a los
sulfatos,
 los resistentes al agua de mar, los de bajo calor de hidratación, los cementos blancos, los de usos especiales
y los de aluminato de calcio. Los cementos comunes son el grupo más importante y dentro de ellos el portland
es el habitual. En España sólo pueden utilizarse los cementos legalmente comercializados en la Unión Europea
y están sujetos a lo previsto en leyes específicas.19
Además del tipo de cemento, el segundo factor que determina la calidad del cemento, es su clase o resistencia
 a compresión a 28 días. Esta se determina en un mortero normalizado y expresa la resistencia mínima, la cual
debe ser siempre superada en la fabricación del cemento. No es lo mismo, ni debe confundirse la resistencia
del cemento con la del hormigón, pues la del cemento corresponde a componentes normalizados y la del hormigón
 dependerá de todos y cada uno de sus componentes. Pero si el hormigón está bien dosificado a mayor resistencia
 del cemento corresponde mayor resistencia del hormigón.18 La norma española establece las siguientes clases de
resistencias:19


Especificaciones de las diversas clases de cementos
Clase de resistenciaResistencia (N/mm²)FraguadoExpansión (mm)
a 2 díasa 7 díasa 28 díasInicio (minutos)Final (horas)
32,5N>16,032,5—52,5>75,0<12,0<10,0
32,5R>10,032,5—52,5>75,0<12,0<10,0
42,5N>10,042,5—62,5>60,0<12,0<10,0
42,5R>20,042,5—62,5>60,0<12,0<10,0
52,5N>20,0>52,5>45,0<12,0<10,0
52,5R>30,0>52,5>45,0<12,0<10,0
N = Resistencia inicial normal. R = Alta resistencia inicial.
Este cuadro es aplicable a los cementos comunes, es decir, al portland,
a los portland con adiciones, a los siderúrgicos, a los puzolánicos y a los compuestos.

El cemento se encuentra en polvo y la finura de su molido es determinante en sus propiedades
conglomerantes, influyendo decisivamente en la velocidad de las reacciones químicas de su fraguado y primer endurecimiento.
 Al mezclarse con el agua los granos de cemento se hidratan sólo en una profundidad de 0,01 mm, por lo que si los granos
fuesenmuy gruesos el rendimiento de la hidratación sería pequeño al quedar en el interior un núcleo inerte. Sin embargo una
 finura excesiva provoca una retracción y calor de hidratación elevados. Además dado que las
resistencias aumentan con la finura hay que llegar a una solución de compromiso, el cemento debe estar finamente molido pero no en exceso.18
El almacenamiento de los cementos a granel se realiza en silos estancos que no permitan la
contaminación del cemento y
 deben estar protegidos de la humedad. En los cementos suministrados en sacos, el almacenamiento
debe realizarse en locales cubiertos, ventilados, protegidos de la lluvia y del sol.19 Un almacenamiento prolongado puede provocar la hidratación
 de las partículas más finas por meteorización perdiendo su valor hidráulico y que supone un
retraso del fraguado y disminución de resistencias.20

[editar]Cemento portland

El cemento portland se obtiene al calcinar a unos 1.500 °C mezclas preparadas artificialmente de
calizas y arcillas. El producto resultante, llamado clinker, se muele añadiendo una cantidad
adecuada de regulador de fraguado, que suele ser piedra de yeso natural.21

Esquema de un horno rotativo donde se mezcla y calcina la caliza y la arcilla para formar el clinker de cemento.

Clinker de cemento antes de su molienda.
La composición química media de un portland, según Calleja, está formada por un 62,5% de CaO
 (cal combinada), un 21% de SiO2 (sílice), un 6,5% de Al2O3 (alúmina), un 2,5% de Fe2O3 (hierro) y otros minoritarios. Estos cuatro componentes son los principales del cemento, de carácter básico la cal y de carácter ácido los otros tres.
 Estos componentes no se encuentran libres en el cemento, sino combinados formando silicatos,
 aluminatos y ferritos cálcicos, que son los componentes hidráulicos del mismo o componentes 
potenciales. Un clinker de cemento portland de tipo medio contiene:21
  • Silicato tricálcico (3CaO·SiO2).................................. 40% a 50%
  • Silicato bicálcico (2CaO·SiO2).................................. 20% a 30%
  • Aluminato tricálcico (3CaO·Al2O3)............................ 10% a 15%
  • Aluminatoferrito tetracálcico (4CaO·Al2O3·Fe2O3)....... 5% a 10%
Las dos principales reacciones de hidratación, que originan el proceso de fraguado y 
endurecimiento son:
2(3CaO·SiO2) + (x+3)H2O → 3CaO·2SiO2 x H2O + 3Ca(OH)2 
2(2CaO·SiO2) + (x+1)H2O → 3CaO·2SiO2 x H2O + Ca(OH)2
El silicato tricálcico es el compuesto activo por excelencia del cemento pues desarrolla una
resistencia inicial elevada y un calor de hidratación también elevado. Fragua lentamente y tiene un
 endurecimiento bastante rápido. En los cemento de endurecimiento rápido y en los de alta
 resistencia aparece en una proporción superior a la habitual.21
El silicato bicálcico es el que desarrolla en el cemento la resistencia a largo plazo, es lento en su
 fraguado y en su endurecimiento. Su estabilidad química es mayor que la del silicato tricálcico,
por ello los cementos resistentes a los sulfatos llevan un alto contenido de silicato bicálcico.21
El aluminato tricálcico es el compuesto que gobierna el fraguado y las resistencias a corto.
Su estabilidad química es buena frente al agua de mar pero muy débil a los sulfatos. Al objeto de
frenar la rápida reacción del aluminato tricálcico con el agua y regular el tiempo de fraguado del
cemento se añade al clinker piedra de yeso.21
El aluminatoferrito tetracálcico no participa en las resistencia mecánicas, su presencia es
 necesaria por el aporte de fundentes de hierro en la fabricación del clinker.21

[editar]Otros cementos

En España existen los llamados cementos portland con adiciones activas que además de los
componente principales de clinker y piedra de yeso, contienen uno de estos componentes
adicionales hasta un 35% del peso del cemento: escoria siderúrgicahumo de sílicepuzolana 
natural, puzolana natural calcinada, ceniza volante silícea, ceniza volante calcárea, esquistoscalcinados
caliza.19
Los cementos de alta resistencia inicial, los resistentes a los sulfatos, los de bajo calor de
hidratación o los blancos suelen ser portland especiales y para ellos e limitan o potencian alguno
de los cuatro componentes básicos del clinker.22
El cemento siderúrgico se obtiene por molturación conjunta de clinker de portland y regulador de
fraguado en proporción de 5-64% con escoria siderúrgica en proporción de 36-95%.19 Constituye
 la familia de los cementos fríos. La escoria se obtiene enfriando bruscamente en agua la ganga
 fundida procedente de procesos siderúrgicos; en este enfriamiento la escoria se vitrifica y se vuelve activa hidraúlicamente por su contenido en cal combinada. La escoria por si sola fragua y endurece lentamente, por lo que para acelerarlo se añade el 
clinker de portland.22
El cemento puzolánico es una mezcla de clinker de portland y regulador de fraguado en proporción
de 45-89% con puzolana en proporción del 11-55%.19 La puzolana natural tiene origen volcánico y
 aunque no posee propiedades conglomerantes contiene sílice y alúmina capaces de fijar la cal en
 presencia de agua formando compuestos con propiedades hidráulicas. La puzolana artificial tiene
 propiedades análogas y se encuentran en las cenizas volantes, la tierra de diatomeas o las
 arcillas activas.22
El cemento aluminoso se obtiene por fusión de caliza y bauxita. El constituyente principal de este
cemento es el aluminato monocálcico.22

[editar]Áridos


Acopio de áridos de tamaño
6-10 mm para la fabricación de hormigón.
Los áridos deben poseer por lo menos la misma resistencia y durabilidad que se exija al hormigón.
 No se deben emplear calizas blandas, feldespatos, yesos, piritas o rocas friables o porosas.
 Para la durabilidad en medios agresivos serán mejores los áridos silíceos, los procedentes de la
 trituración de rocas volcánicas o los de calizas sanas y densas.23
El árido que tiene mayor responsabilidad en el conjunto es la arena. Según Jiménez Montoya no
es posible hacer un buen hormigón sin una buena arena. Las mejores arenas son las de río, que
normalmente son cuarzo puro, por lo que aseguran su resistencia y durabilidad.23
Con áridos naturales rodados, los hormigones son más trabajables y requieren menos agua de
amasado que los áridos de machaqueo, teniéndose además la garantía de que son piedras
duras y limpias. Los áridos machacados procedentes de trituración, al tener más caras de
 fractura cuesta más ponerlos en obra, pero se traban mejor y se refleja en una mayor resistencia.
23
Si los áridos rodados están contaminados o mezclados con arcilla, es imprescindible lavarlos
 para eliminar la camisa que envuelve los granos y que disminuiría su adherencia a la pasta de
hormigón. De igual manera los áridos de machaqueo suelen estar rodeados de polvo de
machaqueo que supone un incremento de finos al hormigón, precisa más agua de amasado y
 darán menores resistencias por lo que suelen lavarse.23
Los áridos que se emplean en hormigones se obtienen mezclando tres o cuatro grupos de
distintos tamaños para alcanzar una granulometría óptima. Tres factores intervienen en una
 granulometría adecuada: el tamaño máximo del árido, la compacidad y el contenido de granos
finos. Cuando mayor sea el tamaño máximo del árido, menores serán las necesidades de
cemento y de agua, pero el tamaño máximo viene limitado por las dimensiones mínimas del
elemento a construir o por la separación entre armaduras, ya que esos huecos deben quedar
rellenos por el hormigón y, por tanto, por los áridos de mayor tamaño. En una mezcla de áridos
una compacidad elevada es aquella que deja pocos huecos; se consigue con mezclas pobres
en arenas y gran proporción de áridos gruesos, precisando poca agua de amasado; su gran
dificultad es conseguir compactar el hormigón, pero si se dispone de medios suficientes para 
ello el resultado son hormigones muy resistentes. En cuanto al contenido de granos finos, estos 
hacen la mezcla más trabajable pero precisan más agua de amasado y de cemento. En cada 
caso hay que encontrar una fórmula de compromiso teniendo en cuenta los distintos factores. 
Las parábolas de Fuller y de Bolomey dan dos familias de curvas granulométricas muy utilizadas
 para obtener adecuadas dosificaciones de áridos.23

[editar]Agua

El agua de amasado interviene en las reacciones de hidratación del cemento. La cantidad de la
 misma debe ser la estricta necesaria, pues la sobrante que no interviene en la hidratación del
cemento se evaporará y creará huecos en el hormigón disminuyendo la resistencia del mismo.
Puede estimarse que cada litro de agua de amasado de exceso supone anular dos kilos de
cemento en la mezcla. Sin embargo una reducción excesiva de agua originaría una mezcla seca, 
poco manejable y muy difícil de colocar en obra. Por ello es un dato muy importante fijar 
adecuadamente la cantidad de agua.24
Durante el fraguado y primer endurecimiento del hormigón se añade el agua de curado para evitar
 la desecación y mejorar la hidratación del cemento.24
Ambas, el agua destinada al amasado, como la destinada al curado deben ser aptas para
 cumplir su función. El agua de curado es muy importante que sea apta pues puede afectar más
negativamente a las reacciones químicas cuando se está endureciendo el hormigón. Normalmente

 el agua apta suele coincidir con la potable y están normalizados una serie de parámetros que 
debe cumplir. Así en la normativa está limitado el pH, 
el contenido en sulfatos, en ion cloro y los hidratos de carbono.24
Cuando una masa es excesivamente fluida o muy seca hay peligro de que se produzca el
fenómeno de
 la segregación (separación del hormigón en sus componentes: áridos, cemento y agua).
Suele presentarse cuando se hormigona con caídas de material superiores a los 2 metros.14

[editar]Otros componentes minoritarios

Artículos principales: adiciones para hormigón y aditivos para hormigón
Los componentes básicos del hormigón son cemento, agua y áridos; otros componentes
minoritarios
que se pueden incorporar son: adiciones, aditivos, fibras, cargas y pigmentos.
Pueden utilizarse como componentes del hormigón los aditivos y adiciones, siempre que
mediante los oportunos ensayos, se justifique que la sustancia agregada en las proporciones
y condiciones previstas produce el efecto deseado sin perturbar excesivamente las restantes
características del hormigón ni representar peligro para la durabilidad del hormigón ni para la 
corrosión de las armaduras.25
Las adiciones son materiales inorgánicos, puzolánicos o con hidraulicidad latente que, finamente
 molidos, pueden ser añadidos al hormigón en el momento de su fabricación, con el fin de mejorar
alguna de sus propiedades o conferirle propiedades especiales. La EHE recoge únicamente la
 utilización de las cenizas volantes y el humo de sílice, determinando sus limitaciones.
Los aditivos son sustancias o productos que se incorporan al hormigón, antes o durante el
amasado, produciendo la modificación de alguna de sus características, de sus propiedades
habituales o de su comportamiento. La EHE establece una proporción no superior al 5% del peso
 del cemento y otros condicionantes.

[editar]Diseño, fabricación y puesta en obra

[editar]Normativa

Introducción
En el siglo XVIII, la resistencia de los elementos estructurales de hormigón armado era calculada
experimentalmente. Navier, a principios del siglo XIX, planteó la necesidad de conocer y establecer
los límites hasta donde las estructuras se comportaban elásticamente, sin deformaciones
permanentes, para poder obtener modelos físico-matemáticos fiables y formulas coherentes.
Posteriormente, dada la complejidad del comportamiento del hormigón, se requirió utilizar
métodos basados en el cálculo de probabilidades para lograr resultados más realistas. En la
primera mitad del siglo XX, se calculaban los elementos estructurales por el método de las Tensiones admisibles.
Seguridad estructural

Las estructuras de los edificios, cuya función es resistir las acciones a que están sometidos, suelen ser de hormigón armado.
En los años 1960, se inició el desarrolló la teoría de la seguridad estructural respecto de los
Estados límites, estableciéndose valores máximos en las flechas y en la fisuración de los
elementos estructurales, acotando los riesgos.
Estados límites
El concepto de Estado límite tuvo su auge en los años 1970, como conjunto de requerimientos que debía satisfacer un elemento estructural para ser considerado apto. Los reglamentos se centraron en dos tipos: los Estados límites de servicio y los Estados límites de solicitación.
Coeficientes de seguridad
Los reglamentos de los años 1970, para poder simplificar los complejos cálculos de probabilidades
, establecieron los Coeficientes de seguridad, en función de la calidad de los materiales, el
control de la ejecución de la obra y la dificultad del proyecto. Se introdujeron los Coeficientes 
de mayoración de cargas o acciones, y los Coeficientes de minoración de resistencia de los
componentes materiales.26
Reglamentos
A mediados del siglo XX los Reglamentos tenían decenas de páginas, en el siglo XXI poseen
cientos. La introducción de programas informáticos posibilita cálculos muy complejos, rápidos y
soluciones más precisas. Los Reglamentos hacen especial hincapié en estados últimos de 
servicio(fisuración, deformaciones) comportamiento (detalles constructivos) y durabilidad 
(recubrimientos, calidades), limitando la resolución experimental con 
múltiples condicionantes. Así, elEurocódigo 1 establece situaciones usuales y accidentales 
(como sismos), que implican Coeficientes de seguridad parciales para las más variadas 
solicitaciones y resistencias. Algunas normativas específicas por ámbitos geográficos son 
EHE (España), Eurocódigo 2 (Europa), ASCE/SEI (Estados Unidos).

[editar]Cálculo y proyecto

Salginatobelbruecke suedwest quer.jpg
Esplanade Bridge 4, Dec 05.JPG
NOB-RioParaguai.jpg
La construcción de puentes se realiza mayoritariamente en hormigón. En las imágenes, el Salginatobel construido en Suiza en 1930, el Esplanade en Singapur de 1997 y el tercero es un puente ferroviario de 1947 en el Río Paraguay que une Brasil y Bolivia.
Antes de construir cualquier elemento de hormigón deben calcularse las cargas a que estará
sometido y, en función de las mismas, se determinarán las dimensiones de los elementos y
calidad de hormigón, la disposición y cantidad de las armaduras en los mismos.
El cálculo de una estructura de hormigón consta de varias etapas. Primero se realizan una serie
de simplificaciones en la estructura real transformándola en una estructura ideal de cálculo.
Después se determinan las cargas que va a soportar la estructura, considerando en cada punto la
combinación de cargas que produzca el efecto más desfavorable. Por último se dimensiona cada
 una de las secciones para que pueda soportar las solicitaciones más desfavorables.
Una vez calculada la estructura se redacta el proyecto, que es el conjunto de documentos que sirve
 para la realización de la obra y que detalla los elementos a construir. En el proyecto están
incluidos los cálculos realizados. También incluye los planos donde figuran las dimensiones de
 los elementos a ejecutar, la tipificación de los hormigones previstos y las características
resistentes de los aceros a emplear.

[editar]Fabricación

Es muy importante conseguir la mezcla óptima en las proporciones precisas de áridos de distintos
 tamaños, cemento y agua. No hay una mezcla óptima que sirva para todos los casos.27 Para
establecer la dosificación adecuada en cada caso se debe tener en cuenta la resistencia
mecánica, factores asociados a la fabricación y puesta en obra, así como el tipo de ambiente a
que estará sometido.28
Hay muchos métodos para dosificar previamente el hormigón, pero son solo orientativos. Las
proporciones definitivas de cada uno de los componentes se suelen establecer mediante
ensayos de laboratorio, realizando correcciones a lo obtenido en los métodos teóricos.29
Se señalan brevemente los aspectos básicos que hay que determinar:
  • La Resistencia característica (fck) se fija en el proyecto.29
  • La selección del tipo de cemento se establece en función de las aplicaciones del
  •  hormigonado (en masa, armado, pretensado, prefabricado, de alta resistencia, 
  • desencofrado rápido, hormigonados en tiempo frío o caluroso, etc.) y del tipo de ambiente
  •  a que estará expuesto.30
  • El tamaño máximo del árido interesa que sea el mayor posible, pues a mayor tamaño menos 
  • agua necesitará ya que la superficie total de los granos de áridos a rodear será más pequeña. 
  • Pero el tamaño máximo estará limitado por los espacios que tiene que ocupar el hormigón fresco 
  • entre dos armaduras cercanas o entre una armadura y el encofrado.29
  • La consistencia del hormigón se establece en función del tamaño de los huecos que hay que 
  • rellenar en el encofrado y de los medios de compactación previstos.29
  • La cantidad de agua por metro cúbico de hormigón. Conocida la consistencia, el tamaño máximo
  •  del árido y si la piedra es canto rodado o de machaqueo es inmediato establecer la cantidad de 
  • agua que se necesita.29
  • La relación agua/cemento depende fundamentalmente de la resistencia del hormigón, influyendo 
  • también el tipo de cemento y los áridos empleados.
  • Conocida la cantidad de agua y la relación agua /cemento, determinamos la cantidad de cemento
  • .29
  • Conocida la cantidad de agua y de cemento, el resto serán áridos.
  • Determinar la composición granulométrica del árido, que consiste en determinar los porcentajes 
  • óptimos de los diferentes tamaños de áridos disponibles. Hay varios métodos, unos son de 
  • granulometría continua, lo que significa que interviene todos los tamaños de áridos, otros son de 
  • granulometría discontinua donde falta algún tamaño intermedio de árido.29
Determinada la dosificación más adecuada, en la planta de hormigón hay que medir los componentes,
el agua en volumen, mientras que el cemento y áridos se miden en peso.31
Los materiales se amasan en hormigonera o amasadora para conseguir una mezcla homogénea de todos
los componentes. El árido debe quedar bien envuelto por la pasta de cemento. Para conseguir esta homogeneidad,
 primero se vierte la mitad de agua, después el cemento y la arena simultáneamente, luego el árido grueso y
por último el resto de agua.31
Para el transporte al lugar de empleo se deben emplear procedimientos que no varíen la calidad del material,
normalmente camiones hormigonera. El tiempo transcurrido no debe ser superior a hora y media desde su amasado.32
Si al llegar donde se debe colocar el hormigón, este ha empezado a fraguar debe desecharse.31

[editar]Puesta en obra


En el hormigón armado se emplea habitualmente acero de alta resistencia de adherencia mejorada o barras corrugadas. El corrugado está normalizado por la forma del resalto en el perímetro de la barra, su altura, anchura y separación.
Colocación de armaduras
Las armaduras deben estar limpias y sujetarse al encofrado y entre sí de forma que mantengan la posición prevista
sin moverse en el vertido y compactación del hormigón. Para ello se colocan calzos o distanciadores en número
 suficiente que permitan mantener la rigidez del conjunto.33
Las distancias entre las diversas barras de armaduras deben mantener una separación mínima que está
 normalizada para permitir una correcta colocación del hormigón entre las barras de forma que no queden huecos o coqueras durante la compactación del hormigón.33
De igual manera el espacio libre entre las barras de acero y el encofrado, llamado recubrimiento, debe mantener una separación mínima, también normalizada, que permita el relleno de este espacio por el hormigón. Este espacio
se controla por medio de separadores que se colocan entre la armadura y el encofrado.33
Encofrado
El encofrado debe contener y soportar el hormigón fresco durante su endurecimiento manteniendo la forma
deseada sin que se deforme. Suelen ser de madera o metálicos y se exige que sean rígidos, resistentes, estancos y limpios.
 En su montaje deben quedar bien sujetos de forma que durante la consolidación posterior del hormigón no se produzcan movimientos.34
Antes de reutilizar un encofrado debe limpiarse bien con cepillos de alambre eliminando los restos de mortero
que se hayan podido adherir a la superficie. Para facilitar el desencofrado se suelen aplicar al encofrado
 productos desencofrantes; estos deben estar exentos de sustancias perjudiciales para el hormigón.34
Tranebergsbron 1933.jpg
La construcción de puentes se realizaba con encofrados fijos. Tranebergsbron,Estocolmo, 1933.
Weidatalbruecke3 2005-11-02.jpg
Weidatalbrücke en Freivorbau, construido en 2005 mediante encofrados deslizantes.
Colocación y compactación
El vertido del hormigón fresco en el interior del encofrado debe efectuarse evitando que se produzca la segregación de la mezcla. Para ello se debe evitar verterlo desde gran altura, hasta un máximo de dos metros de caída libre y no se debe desplazar horizontalmente la masa.35
Se coloca por capas o tongadas horizontales de espesor reducido para permitir una buena compactación (hasta 40 cm en hormigón en masa y 60 cm en hormigón armado). Las distintas capas o tongadas se consolidan sucesivamente, trabando cada capa con la anterior con el medio de compactación que se emplee y sin que haya comenzado a fraguar la capa anterior.35
Para conseguir un hormigón compacto, eliminando sus huecos y para que se obtenga un completo cerrado de la masa,
hay varios sistemas de consolidación. El picado con barra, que se realiza
introduciéndola sucesivamente, precisa hormigones de consistencias blandas y fluidas y se
 realiza en obras de poca importancia resistente. La compactación por golpeo repetido de un
 pisón se emplea en capas de 15 o 20 cm de espesor y mucha superficie horizontal. La
compactación por vibrado es la habitual en hormigones resistentes y es apropiada en
consistencias secas.35
El vibrador más utilizado es el de aguja, un cilindro metálico de 35 a 125 mm de diámetro cuya
frecuencia varía entre 3.000 y 12.000 ciclos por minuto. La aguja se dispone verticalmente en la
masa de hormigón fresco, introduciéndose en cada tongada hasta que la punta penetre en la
capa anterior y cuidando de no tocar las armaduras pues la vibración podría separar la masa de
 hormigón de la armadura. Mediante el vibrado se reduce el aire contenido en el hormigón sin
compactar que se estima del orden del 15 al 20% hasta un 2-3%
después del vibrado.35
Curado
El curado es una de las operaciones más importantes en el proceso de puesta en obra por
la influencia decisiva que tiene en la resistencia del elemento final. Durante el fraguado y primer
 endurecimiento se producen pérdidas de agua por evaporación, formándose huecos capilares
en el hormigón que disminuyen su resistencia. En particular el calor, la sequedad y el viento
provocan una evaporación rápida del agua incluso una vez compactado. Es preciso compensar estas pérdidas curando el hormigón añadiendo abundante agua que permita que se desarrollen nuevos procesos de hidratación con aumento de la resistencia.34
Hay varios procedimientos habituales para curar el hormigón. Desde los que protegen del sol
y del viento mediante tejadillos móviles, plásticos; mediante riegos de agua en la superficie; la
 inmersión en agua empleada en prefabricación; los productos de curado aplicados por
pulverización; los pulverizados a base de resinas forman una película que impide la evaporación
 del agua, se trata de uno de los sistemas más eficaces y más costosos.34
Desencofrado y acabados
La retirada de los encofrados se realiza cuando el hormigón ha alcanzado el suficiente
endurecimiento. En los portland normales suele ser un periodo que oscila entre 3 y 7 días.34
Una vez desencofrado hay que reparar los pequeños defectos superficiales normalmente huecos
o coqueras superficiales. Si estos defectos son de grandes dimensiones o están en zonas críticas
 resistentes puede resultar necesario la demolición parcial o total del elemento construido.34
Es muy difícil que queden bien ejecutadas las aristas vivas de hormigón, por ello es habitual
biselarlas antes de su ejecución. Esto se hace incorporando en las esquinas de los encofrados
unos biseles de madera llamados berenjenos.34


Técnicas constructivas del hormigón
Skygate Bridge R.jpgSaitama raiden todoroki bridge.jpgSaitama todoroki bridge.jpg
En la actualidad las avanzadas técnicas de ejecución de hormigón permiten plantearse retos de envergadura como atravesar grandes masas de agua, levantar esbeltas pilas o construir tableros en curva a gran altura.

[editar]Producción mundial de hormigón

La producción mundial del cemento fue de más de 2.500 millones de toneladas en 2007.
Estimando una dosificación de cemento entre 250 y 300 kg de cemento por metro cúbico de hormigón,
significa que se podrían producir de 8.000 a 10.000 millones de metros cúbicos, que equivalen a
1,5 metros cúbicos de hormigón por persona. Ningún material de construcción ha sido usado en
tales cantidades y en un futuro no parece existir otro material de construcción que pueda
competir con el hormigón en magnitud de volumen.36

[editar]Producción mundial de cemento


     Producción mundial de hormigón.     Producción en EEUU.Datos en millones de metros cúbicos.
Producción mundial de cemento (miles de toneladas)
País2005200620072008
China1.040.0001.200.0001.300.0001.388.400
India145.000155.000160.000177.000
EEUU101.00099.70096.40087.600
Japón69.60069.90070.00062.800
Rusia48.70054.70059.00053.600
Rep. Corea51.40055.00055.00053.900
España50.30054.00050.00080.100
Italia46.40043.20044.00043.000
México36.00040.60041.00047.600
Brasil36.70039.50040.00051.900
TOTAL MUNDIAL2.310.0002.550.0002.600.0002.840.000
  • Los datos de 2007 son estimados.37